An In nite Family of Engel
نویسنده
چکیده
The Extended Engel Expansion is an algorithm that leads to unique series expansions of q-series. Various examples related to classical partition theorems, including the Rogers-Ramanujan identities, have been given recently. The object of this paper is to show that the new and elegant Rogers-Ramanujan generalization found by Garrett, Ismail, and Stanton also ts into this framework. This not only reveals the existence of an innnite, parameterized family of extended Engel expansions, but also provides an alternative proof of the Garrett, Ismail, and Stanton result. A nite version of it, which nds an elementary proof, is derived as a by-product of the Engel approach.
منابع مشابه
An Innnite Family of Engel Expansions of Rogers-ramanujan Type
The Extended Engel Expansion is an algorithm that leads to unique series expansions of q-series. Various examples related to classical partition theorems, including the RogersRamanujan identities, have been given recently. The object of this paper is to show that the new and elegant Rogers-Ramanujan generalization found by Garrett, Ismail, and Stanton also ts into this framework. This not only ...
متن کاملResults on Engel Fuzzy Subgroups
In the classical group theory there is an open question: Is every torsion free n-Engel group (for n ≥ 4), nilpotent?. To answer the question, Traustason [11] showed that with some additional conditions all 4-Engel groups are locally nilpotent. Here, we gave some partial answer to this question on Engel fuzzy subgroups. We show that if μ is a normal 4-Engel fuzzy subgroup of ...
متن کاملOn the additive maps satisfying Skew-Engel conditions
Let $R$ be a prime ring, $I$ be any nonzero ideal of $R$ and $f:Irightarrow R$ be an additivemap. Then skew-Engel condition $langle... langle langle$$f(x),x^{n_1} rangle,x^{n_2} rangle ,...,x^{n_k} rangle=0$ implies that $f (x)=0$ $forall,xin I$ provided $2neq$ char $(R)>n_1+n_2+...+n_k, $ where $n_1,n_2,...,n_k$ are natural numbers. This extends some existing results. In the end, we also gener...
متن کاملOn the Graphs Related to Green Relations of Finite Semigroups
In this paper we develop an analog of the notion of the con- jugacy graph of nite groups for the nite semigroups by considering the Green relations of a nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a nite semigroup S , we first atte...
متن کاملFrameness bound for frame of subspaces
In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.
متن کامل